a note on critical point and blow-up rates for singular and degenerate parabolic equations

نویسندگان

b. liu

f. li

چکیده

in this paper, we consider singular and degenerate parabolic equations$$u_t =(x^alpha u_x)_x +u^m (x_0,t)v^{n} (x_0,t),quadv_t =(x^beta v_x)_x +u^q (x_0,t)v^{p} (x_0,t),$$ in $(0,a)times (0,t)$, subject to nulldirichlet boundary conditions, where $m,n, p,qge 0$, $alpha, betain [0,2)$ and $x_0in (0,a)$. the optimal classification of non-simultaneous and simultaneous blow-up solutions is determined. additionally, we obtain blow-up rates and sets for the solutions. the singular rates for the derivation of the solutions are given.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A note on critical point and blow-up rates for singular and degenerate parabolic equations

In this paper, we consider singular and degenerate parabolic equations$$u_t =(x^alpha u_x)_x +u^m (x_0,t)v^{n} (x_0,t),quadv_t =(x^beta v_x)_x +u^q (x_0,t)v^{p} (x_0,t),$$ in $(0,a)times (0,T)$, subject to nullDirichlet boundary conditions, where $m,n, p,qge 0$, $alpha, betain [0,2)$ and $x_0in (0,a)$. The optimal classification of non-simultaneous and simultaneous blow-up solutions is determin...

متن کامل

A note on blow-up in parabolic equations with local and localized sources

‎This note deals with the systems of parabolic equations with local and localized sources involving $n$ components‎. ‎We obtained the exponent regions‎, ‎where $kin {1,2,cdots,n}$ components may blow up simultaneously while the other $(n-k)$ ones still remain bounded under suitable initial data‎. ‎It is proved that different initial data can lead to different blow-up phenomena even in the same ...

متن کامل

Blow-up for Degenerate Parabolic Equations with Nonlocal Source

This paper deals with the blow-up properties of the solution to the degenerate nonlinear reaction diffusion equation with nonlocal source xut − (xux)x = ∫ a 0 u pdx in (0, a) × (0, T ) subject to the homogeneous Dirichlet boundary conditions. The existence of a unique classical nonnegative solution is established and the sufficient conditions for the solution exists globally or blows up in fini...

متن کامل

Blow-up at the Boundary for Degenerate Semilinear Parabolic Equations

This paper concerns a superlinear parabolic equation, degenerate in the time derivative. It is shown that the solution may blow up in finite time. Moreover it is proved that for a large class of initial data blow-up occurs at the boundary of the domain when the nonlinearity is no worse than quadratic. Various estimates are obtained which determine the asymptotic behaviour near the blow-up. The ...

متن کامل

Blow-up for a Degenerate and Singular Parabolic System with Nonlocal Sources and Absorptions

Abstract This paper deals with the blow-up properties of the solution to the degenerate and singular parabolic system with nonlocal sources, absorptions and homogeneous Dirichlet boundary conditions. The existence of a unique classical nonnegative solution is established and the sufficient conditions for the solution to exist globally or blow up in finite time are obtained. Furthermore, under c...

متن کامل

Blow-up for a degenerate and singular parabolic equation with nonlocal boundary condition

The purpose of this work is to deal with the blow-up behavior of the nonnegative solution to a degenerate and singular parabolic equation with nonlocal boundary condition. The conditions on the existence and non-existence of the global solution are given. Further, under some suitable hypotheses, we discuss the blow-up set and the uniform blow-up profile of the blow-up solution. c ©2016 All righ...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید


عنوان ژورنال:
bulletin of the iranian mathematical society

ناشر: iranian mathematical society (ims)

ISSN 1017-060X

دوره 41

شماره 5 2015

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023